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Introduction

» Objective: study of stochastic models to a better
understanding of component/system ageing

» Degradation models vs. Lifetime models? highly reliable
components, use of complex preventive maintenance
policies, etc.

» Current models: component degradation initiated when put
in service!

» Need of some new models: models with an initiation
period (deterministic or random)
See Guo et al. (13), Nelson (10)



Degradation model

Degradation model with random initiation period (X(t))o:
X(t) = [u(t=8) +oB(t - §)] s

where
» t=0is the instant where the component is put in service
» (B(1))0 is a standard Brownian motion

» Sis an absolutely continuous and positive random
variable, independent of (B(t))o
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Time-to-failure

For degradation model, time-to-failure T. = first-time to reach a
given and known critical level c:

Te =inf{t>0; X(t) > c}

Special case: S exponentially distributed, see Schwarz (01, 02)
with an application in psychology



Simulations
Simulation of three sample paths:
black circles = degradation initiations
red dash line = critical level.
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Statistical model

Observations?
» nindependent components: n copies Xj,..., X, of X

» discrete-time sampling at regular instants
0,0,26,...,mé=r1

Consequence: random number of non-null observations

Model assumptions? Parametric model for the distribution of S,
with unknown parameter 6 € © ¢ RP
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Notations (1/3)

Random variable R; such (R;-1)0 < S; < Rjd.

Q@ ifR >m,S;>mé=rand X;(jé) =0forany je{0,..., m}
Information only on @ (right-censoring)

@ if R =m,(m-1)§<S<mdand X;(j§) =0 for any
je{0,...,m—1} but X;(md) 0
Information only on @ (interval-censoring)

© if R < m, at least two non-null degradation measures
observed
Information on ¢ (interval-censoring), 1 and ¢
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Notations (2/3)

Three random subsets of the individuals:

> Np: set of individuals with zero non-null degradation
measure:

No={i;Ri>m}yc{1,...,n} and Ny=|Ny|
» Nj: set of individuals with exactly one non-null degradation
measure:
M:{i;Ri:m}§{1,...,n} and N1:|~A/1|
> MNa,: set of individuals with exactly at least two degradation

measures:

Nop={i;Ri<m}yc{1,...,n} and N, =|No,|
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Notations (3/3)

» Random vector K = (K,)ren+ such that, for r e N*,
n n
Kr= Tr-1ys<Ri<rs = D IR=r
i=1 i=1

Remark: ¥ Ky = n— Ny
» Random number @, of non-null increments: if Q, non

empty set,
m-1 ]
Qr= Y (m-R) =Y (m-)K
I'EN2+ j=1

taking values in {1,...,(m-1)n}
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An important result

Lemma

Q@ Foranyac[0,1),
On Pr
— ———
na n—oo

@ Leta(m,r) = L2 " Fs(jr/m). We have

— —— ma(m,T)
n n—oo

O E[Q;'|Q,>0] —0

n—oo
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Estimation of the distribution of S (1/2)

> Survival function of S: Fs(t;0) = P[S< ]
» Log-likelihood function:

¢(6|data) = Nglog Fs(7; 9)+§: Krlog (Fs((r-1)5;0) - Fs(rs;0))

r=1
» Maximum likelihood estimator:
0, = argmax,.g/(f|data).

No closed-form expression in general
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Estimation of the distribution of S (2/2)

Asymptotic normality for 8, as n - o? Yes. ..
» MLE = root of the equation:

B 89/?3(7';9\,7) m agl_:s((f— 1)(5,(/9\,7) —8gl?s(r5;§n)

0= NOT + Kr — — — —
Fs(m:0n) = Fs((r=1)8:6n) - Fs(ré; 0n)

» Convergence of (Kj, ..., Kn) to a Gaussian distribution

» 9-method for implicitly defined random variables (Benichou
and Gail, 89)

» Closed expression for the Fisher information
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Example: exponential distribution

» Closed expression for the MLE:

m
’)\\n _ 1 |og NOT + 5mzf=1 rKr
NOT + 52!':1 (I’ - 1)Kr

4]

» Asymptotic variance:
(e)\cS _ 1)2

P 7 52620 (1 —eM)

2 A2
Remark: p* — ———
P 5o 1—e 7
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Estimation of i and o2 (1/2)

» Natural estimator of p:

m-R;
> ) DXy
Ny, j 1 O Z
Hn = = hs
"T85 Y (m-R) Q5
€N,
where 7y, ..., Zg, are the increments between two non-null

degradation measures: random number of iid Gaussian
random variables with mean ;6 and variance 2§

» Natural estimator of #2:

a:2n 5(Qn_1)Z(Zh 5Hn)
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@ 7, is asymptotically normal:
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Estimation of 1, and o2 (2/2)

Proposition

@ 7, is asymptotically normal:
2
_ d o
V @ (Fin = p) — N(O’T)

and
2

= d o
) 222 Mo )

where a(m, T) is given in the Lemma
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Estimation of 1, and o2 (2/2)

Proposition

@ 7, is asymptotically normal:
2
_ d o
V @ (Fin = p) — N(O,?)
and

_ d o2
VA=) o N(O’ m(m,ﬂ)

where a(m, T) is given in the Lemma
@ 72 is asymptotically normal:

V@, (32 - 0?) =2 N(0,20*)
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Mean time-to-failure estimation

» Mean time-to-failure:

MTTF =E[S] + £
L

» Plug-in estimator for MTTF:

MTTE, = foml?s(uﬁn)dmg
1l

» Asymptotic normality? Yes! Asymptotic variance:

c?o?
pAra(m,r)

16)" ( fo ooagl?s(u;e)du)er



Guo et al. data
Black lines: observed degradation paths
Red dashed line: critical level
Blue dashed line: MTTF estimation




Fitted parameters

Parameter Estimation

95% confidence interval

[0.013,0.032]
[0.097,0.119]
[0.033,0.048]

[69.438,107.227]




Survival function

1.0

0.8

0.6

0.4

0.2

0.0

Estimated survival function

50 100 150 200

Time




Hazard function
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